Kinematic Bilateral Teleoperation of Wheeled Mobile Robots Subject to Longitudinal Slippage
نویسندگان
چکیده
With the widespread use of wheeled mobile robots (WMR) in various applications, new challenges have arisen in terms of designing its control system. One of such challenges is caused by wheel slippage. This paper proposes a new method for haptic teleoperation control of a WMR with longitudinal slippage (not including sliding). In this teleoperation system, the mobile robot’s linear velocity follows the master haptic interface’s position. The proposed teleoperation controller also includes an acceleration-level control law for the mobile robot such that the velocity loss caused by slippage is compensated for. Information about the magnitude and timing of slippage is displayed to the human operator through haptic (force) feedback. Despite the functional benefits of displaying slippage information as haptic feedback to the user, there are system stability related concerns that have been addressed using the proposed controller. Experiments of the proposed controller demonstrate that it results in stable bilateral teleoperation with a satisfactory tracking performance.
منابع مشابه
Stable Kinematic Teleoperation of Wheeled Mobile Robots with Slippage using Time-Domain Passivity Control
Wheel slippage creates control challenges for wheeled mobile robots (WMR). This paper proposes a new method for haptic teleoperation control of a WMR with longitudinal slippage by using the time-domain passivity control (TDPC) approach. We show the potential nonpassivity for the environment termination caused by the slippage dynamics. The utilized TDPC approach maintains the passivity of teleop...
متن کاملTrajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV
This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...
متن کاملControl of Wheeled Mobile Manipulators with Flexible Suspension Considering Wheels Slip Effects
Wheeled mobile manipulators utilize both the locomotion capabilities of the wheeled platform and manipulation capacity of the arm. While the modelling and control of such systems have previously been studied, most of them have considered robots with rigid suspension and their wheels are subject to pure rolling conditions. To relax the aforementioned limiting assumptions, this research addresses...
متن کاملNon-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator
This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...
متن کاملBilateral Teleoperation of Wheeled Mobile Robots Working in Common Workspace
This paper proposes a bilateral control framework for mobile robots which share the same workspace. The robots are teleoperated by independent users. Accordingly, for each teleoperated robot the other robots represent moving obstacles or static obstacles with a-priori unknown positions. For such teleoperation systems a velocity generator algorithm is proposed to obtain the linear and angular ve...
متن کامل